Why Do HIV-1 and HIV-2 Use Different Pathways to Develop AZT Resistance?
نویسندگان
چکیده
The human immunodeficiency virus type 1 (HIV-1) develops resistance to all available drugs, including the nucleoside analog reverse transcriptase inhibitors (NRTIs) such as AZT. ATP-mediated excision underlies the most common form of HIV-1 resistance to AZT. However, clinical data suggest that when HIV-2 is challenged with AZT, it usually accumulates resistance mutations that cause AZT resistance by reduced incorporation of AZTTP rather than selective excision of AZTMP. We compared the properties of HIV-1 and HIV-2 reverse transcriptase (RT) in vitro. Although both RTs have similar levels of polymerase activity, HIV-1 RT more readily incorporates, and is more susceptible to, inhibition by AZTTP than is HIV-2 RT. Differences in the region around the polymerase active site could explain why HIV-2 RT incorporates AZTTP less efficiently than HIV-1 RT. HIV-1 RT is markedly more efficient at carrying out the excision reaction with ATP as the pyrophosphate donor than is HIV-2 RT. This suggests that HIV-1 RT has a better nascent ATP binding site than HIV-2 RT, making it easier for HIV-1 RT to develop a more effective ATP binding site by mutation. A comparison of HIV-1 and HIV-2 RT shows that there are numerous differences in the putative ATP binding sites that could explain why HIV-1 RT binds ATP more effectively. HIV-1 RT incorporates AZTTP more efficiently than does HIV-2 RT. However, HIV-1 RT is more efficient at ATP-mediated excision of AZTMP than is HIV-2 RT. Mutations in HIV-1 RT conferring AZT resistance tend to increase the efficiency of the ATP-mediated excision pathway, while mutations in HIV-2 RT conferring AZT resistance tend to increase the level of AZTTP exclusion from the polymerase active site. Thus, each RT usually chooses the pathway best suited to extend the properties of the respective wild-type enzymes.
منابع مشابه
Drug Resistance Profile and Subtyping of HIV-1 RT Gene in Iranian Patients under Treatment
Identification of drug resistant mutations is important in the management of HIV-1 infected patients. The aim of the current study was to evaluate drug resistance profile of RT gene and assess subtype among HIV-1 circulating strains and intensification of physician’s options for the best therapy. HIV-1 RNA of 25 sampleswas extracted from plasma and RT Nested- PCR was performed and the fin...
متن کاملSet up of Genotyping Test for Detection of HIV-1 Drug Resistance
Background and Aims: Genotyping assay has been accepted as a guidance in the therapeutic management of Human Immunodeficiency virus 1 (HIV-1). But, it is not commonly used in our country due to its high running cost. The aim of this study is evaluate an in-house genotyping resistance test (GRT) for HIV-1. Methods: HIV-1 RNA of 20 samples were extracted from plasma and RT Nested- PCR was perform...
متن کاملThe thiocarboxanilide nonnucleoside inhibitor UC781 restores antiviral activity of 3'-azido-3'-deoxythymidine (AZT) against AZT-resistant human immunodeficiency virus type 1.
N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furanca rbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3'-azido-3'-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can res...
متن کامل3'-Azido-3'-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors.
Nonnucleoside reverse transcriptase (NNRT) inhibitors (R82913; (+)-S-4,5,6,7-tetrahydro-9-chloro-5-methyl-6-(3-methyl-2-butenyl)- imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione; Cl-TIBO; and BI-RG-587, nevirapine) were used to select resistant human immunodeficiency virus type 1 (HIV-1) variants by passage in cell cultures of wild-type or 3'-azido-3'-deoxythymidine (zidovudine; AZT)-resistan...
متن کاملEvidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1.
The majority of human immunodeficiency virus type 1 (HIV-1)-infected patients treated with zidovudine (AZT) plus zalcitabine (ddC) and didanosine (ddI) develop AZT resistance mediated by mutations such as T215Y and M41L. Only a small proportion of patients develop multiple dideoxynucleoside resistance (MDNR) mediated by the Q151M mutation. To gain insight into the factors responsible for the lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Pathogens
دوره 2 شماره
صفحات -
تاریخ انتشار 2006